Uniform Regularity for the Navier-stokes Equation with Navier Boundary Condition
نویسنده
چکیده
We prove that there exists an interval of time which is uniform in the vanishing viscosity limit and for which the Navier-Stokes equation with Navier boundary condition has a strong solution. This solution is uniformly bounded in a conormal Sobolev space and has only one normal derivative bounded in L∞. This allows to get the vanishing viscosity limit to the incompressible Euler system from a strong compactness argument.
منابع مشابه
Uniform Regularity and Vanishing Viscosity Limit for the Compressible Navier-Stokes with General Navier-Slip Boundary Conditions in Three-Dimensional Domains
In this paper, we investigate the uniform regularity for the isentropic compressible Navier-Stokes system with general Navier-slip boundary conditions (1.6) and the inviscid limit to the compressible Euler system. It is shown that there exists a unique strong solution of the compressible Navier-Stokes equations with general Navier-slip boundary conditions in an interval of time which is uniform...
متن کاملUniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier-stokes Equations
We study the inviscid limit of the free boundary Navier-Stokes equations. We prove the existence of solutions on a uniform time interval by using a suitable functional framework based on Sobolev conormal spaces. This allows us to use a strong compactness argument to justify the inviscid limit. Our approach does not rely on the justification of asymptotic expansions. In particular, we get a new ...
متن کاملGlobal Regularity of the Navier-Stokes Equation on Thin Three Dimensional Domains with Periodic Boundary Conditions
This paper gives another version of results due to Raugel and Sell, and similar results due to Moise, Temam and Ziane, that state the following: the solution of the Navier-Stokes equation on a thin three dimensional domain with periodic boundary conditions has global regularity, as long as there is some control on the size of the initial data and the forcing term, where the control is larger th...
متن کاملOn regularity of stationary Stokes and Navier-Stokes equations near boundary
On regularity of stationary Stokes and Navier-Stokes equations near boundary KYUNGKEUN KANG Received: date / Revised version: date – c Springer-Verlag 2001 Abstract. We obtain local estimates of the steady-state Stokes system “without pressure” near boundary. As an application of the local estimates, we prove the partial regularity up to the boundary for the stationary Navier-Stokes equations i...
متن کاملAnticipating Stochastic 2D Navier-Stokes Equations
In this article, we consider the two-dimensional stochastic Navier-Stokes equation (SNSE) on a smooth bounded domain, driven by affine-linear multiplicative white noise and with random initial conditions and Dirichlet boundary conditions. The random initial condition is allowed to anticipate the forcing noise. Our main objective is to prove the existence and uniqueness of the solution to the SN...
متن کامل